## **Unit 4: Maintaining The Internal Environment**

Year 12 Biology ATAR // Mark Weldon

#### HOMEOSTASIS

• Organisms have structural features, behavioural responses and physiological mechanisms to help maintain a constant internal state.

• Organisms communicate constantly with their environment (external and internal).

#### **DETECTING STIMULI**

- The principles of communication include:
- $\rightarrow$  the production of a signal that contains information to be transferred;
- $\rightarrow$  the detection of the signal;
- $\rightarrow$  the transfer of the signal to the target;
- $\rightarrow$  a response to the signal by the target;
- $\rightarrow$  the 'switch off' of a signal once it has been responded to.
- Stimuli may be physical (e.g. light, heat) or chemical (e.g. hormones).
- External and internal receptors allow organisms to respond to stimuli.
- There are five main types of receptor: chemoreceptors, mechanoreceptors, photoreceptors, thermoreceptors and pain receptors.

#### **EXTERORECEPTORS**

exteroreceptors: receptors that are highly specialised to receive signals from the external environmentExteroreceptors work by receiving information and converting it to chemical signals that can be relayed between body cells.

- Exteroreceptors can be distributed:
- $\rightarrow$  evenly over the body (e.g. pain receptors);
- $\rightarrow$  in specialised areas (e.g. taste buds);
- $\rightarrow$  concentrated in organs (e.g. the eye).

#### **INTERORECEPTORS**

- Interoreceptors receive from within the body's internal environment.
- $\rightarrow$  An internal signal could be the increase in CO<sub>2</sub> levels or pH.
- The internal environment is created by interstitial fluid (bathes cells) and blood plasma.
- The internal environment is maintained within narrow limits for maximum cellular efficiency.

| Receptor         | Stimuli                           | Location                       |
|------------------|-----------------------------------|--------------------------------|
| chemoreceptors   | exteroreceptors: smell (olfactory | nose, mouth                    |
|                  | receptors) or taste.              |                                |
|                  | interoreceptors: detection of     | aorta, carotid arteries.       |
|                  | oxygen and ion levels             |                                |
| mechanoreceptors | exteroreceptors and               | ear, skin                      |
|                  | interoreceptors: pressure, touch, |                                |
|                  | tension and sound vibrations.     |                                |
| photoreceptors   | exteroreceptors: light            | eyes and light-sensitive cells |
| thermoreceptors  | exteroreceptors: external         | skin                           |
|                  | temperature variations            |                                |
|                  | interoreceptors: internal         | hypothalamus                   |
|                  | temperature variation             |                                |
| pain receptors   | exteroreceptors and               | free nerve endings in the skin |
|                  | interoreceptors: pain             |                                |

#### EXAMPLES OF EXTERORECEPTORS AND INTERORECEPTORS

## HOMEOSTASIS SYSTEMS

• The nervous and endocrine systems are responsible for monitoring changes and co-ordinating responses in complex organism.

## NERVOUS SYSTEM

• The nervous system is comprised of the central nervous system (CNS) and the peripheral nervous system (PNS).

- The CNS is formed by the brain and spinal cord.
- $\rightarrow$  The CNS is responsible for processing, storing and co-ordinating information.
- The PNS is made up of all other neurons.
- $\rightarrow$  The PNS transmits information to and from the CNS.



#### NEURAL PATHWAYS

- Impulses follow sensory neurons from the source of stimulation via the PNS to the CNS.
- Impulses are then relayed (from sensory neurons) via interconnecting neurons to the appropriate motor neurons.
- Motor neurons relay the signal via the PNS to effectors (muscles/glands that respond to the stimuli).

#### **NEURONS**

- Neurons are the basic units of the nervous system.
- Neurons consist of fibres which contain a tubular extension called the **axon**.
- $\rightarrow$  The axon is enclosed in a fatty material called the **myelin sheath**.
- Myelin is composed of Schwann cells.
- $\rightarrow$  Schwann cells wrap around the fibre, leaving small nodes along the axon.
- $\rightarrow$  This assists in transmission; more myelin means faster conduction.
- $\rightarrow$  Oligodendrocytes create protecting nodes around the interconnecting tissues.

#### VOLUNTARY/INVOLUNTARY RESPONSES

- The nervous system is responsible for rapid responses to changes in the environment.
- Some responses are voluntary, others are involuntary.
- $\rightarrow$  Nerves involved in voluntary responses make up the somatic system.
- $\rightarrow$  Nerves involved in involuntary responses make up the **autonomic system**.
- Involuntary responses are only recognised when something goes wrong.



#### **ENDOCRINE SYSTEM**

- Some changes are slow and under control of hormones.
- $\rightarrow$  Not all stimuli require immediate response.
- Hormones are chemical substances (proteins, fatty and amino acids etc.) from the endocrine system.
- In vertebrates, they are secreted through **ductless glands** directly into the bloodstream.
- Hormones target and activate certain cells and organs, causing a response.
- $\rightarrow$  Cells must have specific receptors.

#### **HORMONE EFFECTS**

- Some are temporary (e.g. adrenaline), some are longer (e.g. development of a foetus).
- The co-ordination of activities is often connected to pituitary gland.
- $\rightarrow$  This produces many hormones that affect hormone production by other glands.
- In other animals:
- $\rightarrow$  Female ring doves coo to release hormones for egg development.
- $\rightarrow$  Light sensitive hormones called auxin is responsible for plant growth towards light to maximise their photosynthesis abilities.

## **IMPORTANCE OF RESPONSE**

• Responding to signals is essential for the developmental processes, growth and reproduction of organisms and cells.

- $\rightarrow$  Failure in signalling pathways can lead to uncontrolled cell growth.
- $\rightarrow$  Failure to respond to apoptosis can lead to malformations.
- $\rightarrow$  Differentiation of stem cells during reproduction occurs from internal and external responses.
- Homeostasis requires the response of signals.

• The ability to keep substance concentrations equal, the movement of materials and the activities of enzymes require responses to correct these changes back to normal.

- $\rightarrow$  This is essential as biochemical process can be disrupted or cells can be killed.
- Responding to signals is essential to surviving challenges in the external environment.

 $\rightarrow$  Avoiding injury and death (e.g. predation or falling objects) is crucial to an organism's survival.

## THE PRINCIPLE OF FEEDBACK

- Organisms have narrow ranges for internal temperature and fluid concentrations.
- $\rightarrow$  Minor fluctuations always occur (e.g. disease, trauma).
- $\rightarrow$  Disturbances must be controlled quickly for cells to function effectively.
- Signals about disturbances are fed to a control centre.
- $\rightarrow$  The centre interprets and co-ordinates specific responses that counteract or reinforce disturbances.
- $\rightarrow$  These processes are called feedback mechanisms.

• Feedback mechanisms are triggered when a stimulus is detected by a receptor, which is then processes and conveyed to an effector, carrying a response.



## **CONTROLLING RESPONSE**

• Once signals are responded to, it must be switched off (otherwise it wastes energy/cells are damaged).

- To control a response, a cell or organism can:
- $\rightarrow$  disrupt the signal pathway;
- $\rightarrow$  remove the original stimulus, or;
- $\rightarrow$  respond in a way that alters the original signal (ie. feedback).

## **TYPES OF FEEDBACK**

• Negative feedback refer to mechanisms that counteract a stimulus.

 $\rightarrow$  Negative feedback is important to restore the internal environment to a constant set of conditions.

**EX:** Eating chocolate leads to increase blood glucose, the body responds by removing the glucose from the blood and converting it to glycogen.

• Positive feedback refers to mechanisms that reinforce the original stimulus.

**EX:** As thyroxin rises in tadpoles, positive feedback allows for a rise in thyroxin concentration allowing metamorphosis from tadpole to frog.

• Positive feedback can be harmful.

**EX:** Increased temperature during fever can lead to a higher set point for temperature which can lead to heatstroke.

## **TOLERANCE RANGE**

• A **tolerance range** is a set range in which difference levels of materials, pressure and temperature can be tolerated.

- Homeostasis maintains levels within an optimum range.
- If homeostasis fails, organisms can fall into a state of psychological stress.

## METABOLIC ACTIVITY

- Metabolism is the sum of chemical reactions that occur in an organism to maintain life.
- $\rightarrow$  Most reactions require enzymes (which function at particular pH/temperatures).
- Metabolic activity creates internal body heat; increased activity results in increased temperature.
- These aspects are all connected: an increase in  $CO_2 \rightarrow$  decrease in pH  $\rightarrow$  decrease in enzyme function
- $\rightarrow$  decrease in metabolism  $\rightarrow$  decrease in internal body temperature.
- Physiological processes aid in the regulation the body during exercise.
- $\rightarrow$  Increase in breathing rate to remove CO<sub>2</sub>.
- $\rightarrow$  Thermoreceptors signal for sweat glands to operate to lower body temperatures.
- Structural features and behaviour also regulate the body during exercise.

 $\rightarrow$  Removing clothing or moving into shade are behaviours seen when individuals notice an increase in body temperature.

#### THERMOREGULATION

- Different animals have different internal temperatures.
- These temperatures are where their enzymes work most efficiently (ie. optimum temperature).

 $\rightarrow$  If internal temperatures rise too much, enzymes denature and metabolic processes fail causing **hyperthermia**.

 $\rightarrow$  If internal temperatures fall, enzyme function slows significantly causing hypothermia.

#### **ENDOTHERMS**

• Endotherms retain heat generated by metabolic activity in their bodies.

 $\rightarrow$  As they are usually **homoeothermic**, endotherms usually can maintain a relatively constant body temperature.

 $\rightarrow$  Exceptions include fast-swimming fish (such as the yellow-finned tuna) and butterflies – these species are **poikilothermic endotherms**.

#### **ECTOTHERMS**

• Ectotherms depend on absorbing heat from the external environment.

 $\rightarrow$  As they are usually **poikilothermic**, ectotherms cannot control their internal temperature which fluctuated with their surroundings.

 $\rightarrow$  Exceptions exist, much like endotherms, which include desert lizards and tropical marine invertebrates (such as the blood lobster) – these species are **homoeothermic ectotherms**.

|            | Homoeothermic                       | Poikilothermic                        |
|------------|-------------------------------------|---------------------------------------|
| Endotherms | Koalas, emus, humans, wombats and   | Yellow-finned tuna, bees, butterflies |
|            | kookaburras.                        | and hibernating animals.              |
| Ectotherms | Desert lizards and tropical marine  | Snakes, lizards, frogs and toads,     |
|            | invertebrates (cleaner shrimp etc.) | invertebrates and fish.               |

#### STRATEGIES AND ADAPTATIONS FOR THERMOREGULATION

- Heat transfer depends on the temperature gradient between the internal and the external environment.
- The purpose of thermoregulation is to find heat balance (balance between heat loss and heat gain).
- This usually involves the interaction of an organism's physiology and their behaviour.

#### HEAT LOSS AND HEAT GAIN

- An organism may gain or lose heat in a combination of four ways:
- $\rightarrow$  conduction: the transfer of heat from a hotter object to cooler object by direct contact.
- $\rightarrow$  convection: the transfer of heat when hot air/water rises and is replaced by cooler aid/water.
- $\rightarrow$  evaporation: when water/sweat turn to vapour, cooling the skin.
- $\rightarrow$  radiation: when heat is transferred from object by infrared waves.

#### STAYING COOL IN THE HEAT

• Endothermic homeotherms (those that maintain internal body temperatures and retain heat from metabolic activity) need to be able to reduce heat gain and increase heat loss.

| Adaptation    | Response                                                              | Effect                                                                          |
|---------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|
| physiological | vasodilation                                                          | arterioles widen to increase blood flow to<br>the skin where heat can evaporate |
|               | sweating                                                              | water evaporation increases cooling from the skin                               |
|               | metabolic processes stay steady until body's cooling mechanisms fail. | metabolism produces internal body heat                                          |
| behavioural   | shelter from high temperatures                                        | reduced contact with higher temperatures                                        |
|               |                                                                       | can reduce temperature gain                                                     |
|               | lick wrists where blood vessels are                                   | increases evaporation from the surface                                          |
|               | dense                                                                 | and cools the surface, cooling the blood                                        |
|               | submerge in water                                                     | reduces body temperature by direct contact with cooler water                    |
|               | lay/spread out                                                        | increased surface area increases heat loss                                      |
|               | moulting                                                              | reduced hair reduces the ability to hold heat, reducing heat gain               |
| structural    | smaller animals live in warmer                                        | increased surface area to volume ratio for                                      |
|               | climates                                                              | heat loss.                                                                      |
|               | larger ears                                                           | increases surface area                                                          |
|               | light colour hair/fur                                                 | reflects light to reduce heat gain                                              |

## ADAPTATIONS FOR HEAT LOSS

#### ADAPTATIONS FOR HEAT GAIN

| Adaptation    | Response                            | Effect                                       |
|---------------|-------------------------------------|----------------------------------------------|
| physiological | vasoconstriction                    | arterioles constrict to limit blood flow to  |
|               |                                     | extremities (ie. hands and feet)             |
|               | piloerection                        | arrector pili muscles contract, raising hair |
|               |                                     | in order to trap layer of air to act as      |
|               |                                     | insulator                                    |
|               | counter-current heat exchange       | blood in arteries to foot/fins, warms blood  |
|               |                                     | returning in veins (penguins)                |
| behavioural   | huddling                            | decreases overall surface area exposed to    |
|               |                                     | elements (penguins)                          |
|               | nests not usually made              | young must huddle against parents which      |
|               |                                     | decreased SA:V ratio for heat loss           |
|               | migration                           | movement to different climates that are      |
|               |                                     | adequate for survival                        |
| structural    | feathers, fur and fat               | acts as an insulating layer                  |
|               | larger animals in cool environments | decreases SA:V ratio for heat loss           |
|               | small ears                          | minimise SA for heat loss                    |

## **HIBERATION AND AESTIVATION**

• In very cold conditions, an increase in metabolic rate may be insufficient to maintain body temperature within tolerance limits.

- During hibernation, the metabolic rate falls to a level that just sustains life.
- In very dry conditions, **aestivation** occurs much like hibernation.

EX: Snails retreat into their shell and seal off.

## UPPER AND LOWER CRITICAL LIMITS

• A lower critical limit is a temperature where metabolic rate rises, increasing heat output.

• An upper critical limit is a temperature where a body's cooling mechanisms fail and metabolic rate increases with external temperature.

## WATER

- Water is a universal solvent and is essential to life.
- Most salts and minerals are broken into ions by water, creating aqueous solutions.
- Metabolic reactions occur in solutions composed of water.

## OSMOREGULATION

• Water balance requires continuous homeostatic control, or osmoregulation.

• When supply does not meet demand, the concentration of solute versus the concentration of solvent is tissue fluids becomes difficult to regulate.

- Physiological functions are then affected:
- $\rightarrow$  A loss in blood volume leads to pressure drops.
- $\rightarrow$  Wastes are not excreted efficiently.
- $\rightarrow$  Enzyme function is affect.
- $\rightarrow$  Dehydration can lead to death or the collapse of shoot systems (plants).

## **KIDNEYS**

- Kidneys are important for homeostasis and osmoregulation.
- Their osmoregulatory function includes:
- $\rightarrow$  the removal of nitrogenous wastes;
- $\rightarrow$  the regulation of water concentration in the blood;
- $\rightarrow$  the maintaining of ion levels in the blood.

#### NITROGENOUS WASTES

- Nitrogenous wastes are forms via deamination (the removal of an amino group from an amino acid).
- Ammonia (and its conversion, **urea**) are toxic and affects cell pH.

| freshwater fish                     | lots of dilute urine with ammonia is excreted<br>quickly and continuously to prevent build up. |
|-------------------------------------|------------------------------------------------------------------------------------------------|
| marine fish and terrestrial animals | convert ammonia to urea and is released as urine (small amount)                                |
| reptiles and birds                  | produce uric acid, the least toxic form of nitrogenous waste with very little water.           |

#### KIDNEY OSMOREGULATION

• Kidney osmoregulation is controlled by an antidiuretic hormone (vasopressin).

 $\rightarrow$  Vasopressin is secreted from neurosensory cells in hypothalamus when osmoregulators detect increase in blood solutes.

• Osmoregulation increases the permeability of **distal tubule** (kidney).

 $\rightarrow$  As water concentration increases in blood plasma, negative feedback decreases release of vasopressin.

## OSMOREGULATORS AND OSMOCONFORMERS

• Different organisms have various ways to maintain water balance.

# • Osmoregulators regulate osmotic concentration to be **higher or lower than the external environment**.

• Osmoconformers allow osmotic concentration to be equal to external environments.

## STRUCTURAL FEATURES OF OSMOREGULATORS

- Osmoregulators have a waterproof/impermeable outer layer to reduce water loss.
- $\rightarrow$  Scales, hair, feathers and the epidermis are examples of this outer layer.
- $\rightarrow$  Longer loops of Henle.
- Animals are osmoregulators and have adaptations to aid in osmoregulation.
- EX: High densities of sweat pores in highly exposed areas.

• Plants are also osmoregulators, however water is constantly lost through the stomata. Therefore, structural adaptations include:

- $\rightarrow$  thick waxy cuticle on the leaf surface;
- $\rightarrow$  reduced numbers of stomata on the top of the leaf and increased numbers on the bottom of the leaf;
- $\rightarrow$  sunken stomata;
- $\rightarrow$  hairs on leaves;
- $\rightarrow$  cylindrical or rolled leaves.

## PHYSIOLOGICAL PROCESSES OF OSMOREGULATORS

• **Osmoregulators** have highly specialised mechanisms for regulating internal water and solute concentrations, despite concentration changes in the external environment.

- These are some examples of physiological processes that help in osmoregulation:
- $\rightarrow$  reabsorption of water from kidney;
- $\rightarrow$  excretion of nitrogenous wastes as urea or uric acid;
- $\rightarrow$  slower production of urine;
- $\rightarrow$  antidiuretic hormone (vasopressin);
- $\rightarrow$  metabolising fat to produce water.

#### **BEHAVOURAL ADAPTATIONS OF OSMOREGULATORS**

- Examples of behaviours of osmoregulators include:
- $\rightarrow$  burrowing;
- $\rightarrow$  hibernating;
- $\rightarrow$  aestivation (the prolonged dormancy of an insect, fish or amphibian during dry periods).

#### AQUATIC ORGANISMS

- Marine organisms have body fluids that tend to be **hypotonic**.
- $\rightarrow$  Body fluids have **lower** solute concentration than the external environment.
- Freshwater organisms have body fluids that tend to be **hypertonic**.
- $\rightarrow$  Body fluids have **higher** solute concentration than the external environment.

#### **OSMOCONFORMERS**

- Osmoconformers include most marine invertebrates.
- Interstitial fluid concentration fluctuates to match the external environment.
- Fluids are said to be **isotonic** (ie. the same concentration).
- Organisms, known as euryhaline species, can tolerate fluctuations in salinity, (found in estuaries).

#### DISEASES

- A disease is any condition that interferes with how an organism functions.
- Infectious diseases are caused by invasion by a pathogen and can be transmitted.
- Endemic diseases are common in populations, but in low levels.

• **Epidemics** occur when there is a considerable increase in cases; **pandemics** occur when epidemics spread across multiple continents.

- An outbreak occurs when there is a sudden increase in incidence.
- An infected organism is known as the **host**.
- An infectious agent/organism that causes disease is called a **pathogen**.
- $\rightarrow$  Pathogens include: viruses, bacteria, fungi, protists and **parasites**.
- Transmission refers to the passing of disease from an infected host to another individual.
- Pathogens have a variety of adaptations that enable transmission from host to host.
- Easily transmitted diseases are **contagious**.

#### NON-INFECTIOUS DISEASES

- Non-infectious diseases are not caused by pathogens.
- Non-infectious diseases are not communicable (transmissible).

**EX:** Nutritional diseases (such as obesity), genetic diseases (such as haemophilia) and autoimmune disease (such as multiple sclerosis).

#### THE NATURE OF DISEASE

- Most microorganisms are not pathogenic.
- Microorganisms are pathogenic if:
- $\rightarrow$  they stick to or invade the cell;
- $\rightarrow$  produce toxins;
- $\rightarrow$  copes with or avoids the immune system.

#### VARIATIONS IN PATHOGENS

- Pathogens differ in their **pathogenicity** (disease-causing ability).
- The intensity of a pathogen's effect is called it **virulence**.

#### SYMPTOMS

- Symptoms are the effects of a pathogen on the host.
- Symptoms are usually characteristics of the disease.
- $\rightarrow$  They can be used to diagnose the pathogen.

#### **INCUBATION PERIOD**

- Symptoms do not appear immediately.
- An incubation period refers to the time between infection and the onset of symptoms.
- This 'time lag' occurs for a number of reasons:
- $\rightarrow$  pathogens may need to divide;
- $\rightarrow$  may take time to reach target tissue;
- $\rightarrow$  toxins take time to accumulate.
- Disease is often contagious before symptoms occur.
- $\rightarrow$  incubation periods may be an adaptation by the pathogen (before symptoms occur).

#### VIRUSES

- A virus is a non-cellular agent composed of a protein coat and nucleic acid (DNA/RNA, not both).
- A virus infects an organism when it injects its nucleic acid into a host cell.
- $\rightarrow$  Viral nucleic acids then direct the host cell machinery to produce viral proteins and viral DNA copies.

 $\rightarrow$  These are then assembled into new viruses and are emitted during cell lysis (process of cell bursting).



#### VIRAL DISEASES

- All viruses cause disease.
- Viruses rely of the host cell to complete its life cycle.
- A virus cannot function outside of the host cell and is, therefore, called an **obligate** parasite.
- $\rightarrow$  This trait poses limitations in viral research.

#### VIRAL PHASES

- Some viruses do not cause host cells to make copies immediately.
- Instead they enter two phases, the **lysogenic phase** and the **lytic phase**.
- During the lysogenic phase:
- $\rightarrow$  viral nucleic acid is integrated with the host's chromosome;
- $\rightarrow$  viruses replicate with the host cell, remaining dormant (avoiding detection by defence mechanisms);
- The only way to remove the virus is to kill the host cell.
- The lytic phase is usually entered due to environmental factors.
- $\rightarrow$  The virus exits the host's genome and carries on with assembling new viruses.

#### VIRUS SPECIFICITY AND SUSCEPTABILITY

- Each virus is highly specific to the host cell/organism it can infect.
- Virus specificity is usually defined by the receptors in the host cell.

**EX:** An adenovirus specifically infects lung epithelial cells (causing the common cold) because it is able to recognise and bind to receptors only expressed on lung epithelium.

• All organisms are susceptible to viruses.

## BACTERIA

• Bacteria are a cellular agent, only a small number cause disease (ie. most are not pathogenic).

• Bacteria, as they are prokaryotes, have no-membrane bound organelles or nucleus, but do possess ribosomes and a single circular chromosome.

• Bacteria can survive in a tougher, dormant form called an endospore which are resistant to extreme temperatures and chemicals.

 $\rightarrow$  This adaptation helps in dispersal and resistance.

- A slimy **bacterial capsule** is an adaptation helpful in sticking to surfaces.
- Some bacteria possess flagellum which help movement.



- Bacteria can reproduce by binary fission or by budding off spores.
- This allows bacteria to reproduce very rapidly in favourable conditions.

#### **BACTERIAL CLASSIFICATION AND INDENTIFICATION**

#### • Bacteria can be classified by their shape, cluster or strain.

| shape   | • coccus (spherical)                          |
|---------|-----------------------------------------------|
|         | <ul> <li>bacillus (rod)</li> </ul>            |
|         | • spirilli (spiral)                           |
|         | • vibrio (comma)                              |
| cluster | <ul> <li>diplococci (two)</li> </ul>          |
|         | <ul> <li>streptococci (chains)</li> </ul>     |
|         | <ul> <li>staphylococcus (clusters)</li> </ul> |
| strain  | • gram positive (purple)                      |
|         | • gram negative (pink)                        |



## CAUSES OF BACTERIAL DISEASE

- Bacteria can be transmitted via direct contact, in food and water, and in droplets of moisture in the air.
- Once inside the host, bacteria divide rapidly.

• Some bacteria damage the host tissues directly, or release toxins, whilst others interfere with the immune system.

## FUNGI

- Fungi are eukaryotes that reproduce using spores.
- Cell walls are made of chitin.
- As with bacteria, not all fungi are pathogenic.

## EXTERNAL FUNGAL DISEASES

- Most fungal diseases in animals are external.
- $\rightarrow$  These diseases irritate or inflame the skin.
- As they grow on the skin, fungi produce spores.
- $\rightarrow$  Infected skin flakes off, carrying spores with it.
- $\rightarrow$  If these spores come into contact with damage skin, they may cause new infections.
- Spores are long-lived; an adaptation that improves their transmission.

## INTERNAL FUNGAL DISEASES

- Internal fungal disease is rare in animals.
- These diseases are usually harmless unless the immune system is weak.

## PROTISTS

- Protists are unicellular, eukaryotic organisms.
- Protists are able to reproduce asexually and sexually.
- From 6500 species, less than 24 species cause disease in humans but infect millions.
- No effective treatments exist from diseases caused by pathogenic protists.

## PATHOGENIC FACTORS AFFECTING DISEASE TRANSMISSION

- Pathogenic factors influencing the ability of a pathogen to spread include:
- $\rightarrow$  the mechanism of transmission;
- $\rightarrow$  the method of transmission (some climate/geographical areas may restrict the spread of disease);
- $\rightarrow$  the mode of transmission (particular groups can be more susceptible);
- EX: those sharing syringes/needles are more susceptible to Hepatitis C.
- $\rightarrow$  a pathogen's **infectivity** (ability to spread) and **natural history** (course diseases follow if untreated);
- $\rightarrow$  the growth of a pathogen in individuals.

## ENVIRONEMTAL FACTORS AFFECTING DISEASE TRANSMISSION

- Infrastructure and climate affect the spread of disease.
- Some diseases are well adapted to certain environments:

 $\rightarrow$  dengue fever is prone to transmission in urban environments as mosquitoes (*Aedes aegypti*) are well adapted to living and reproducing in water tanks/buckets.

- Increases in temperature and changes in rainfall are likely to result in the spread of disease.
- The displacement of populations or the breakdown of usual sanitation from natural catastrophes are a significant influence in the spread of disease.

## HOST FACTORS AFFECTING DISEASE TRANSMISSION

- Risk of exposure can be linked with age, sex or socioeconomic status.
- $\rightarrow$  the elderly, poor and chronically ill are more susceptible because of weak immunity or health care

- The introduction of a pathogen into previously unexposed populations increase the impact of disease.
- Population density influences disease spread; large populations in close proximity are more susceptible to smaller, less dense populations.
- $\rightarrow$  the movement of these populations allow disease to spread across large areas (ie. when isolated populations come into contact with another).

## MODES OF TRANSMISSION

- Transmission and spread of disease is facilitated by regional and global movement of organisms.
- Different pathogens have different modes of transmission.
- Pathogens need to escape from one host and enter another.
- Many pathogens do not survive long outside of a host.

## DIRECT TRANSMISSION

- Many pathogens have adaptations to ensure they are transmitted from one host to another when the skin of the two hosts come into direct contact.
- This usually involves symptoms on the skin:
- $\rightarrow$  pathogens form fluid-filled lesions on the skin (prompting scratching to spread the infection to new areas or a new host);
- $\rightarrow$  asymptomatic shedding of the virus can occur (before symptoms occur, unaware of contagiousness).
- Zoonotic infections are naturally transmitted between vertebrate animals and humans.

## TRANSMISSION VIA BODILY FLUIDS

- Body fluids are any liquids that comes from inside the body.
- A pathogen must survive outside the body to be transmissible via bodily fluids.
- A variety of pathogens can be spread through sexual contact (ie. HIV, hepatitis B, HPV).

## FOODBORNE TRANSMISSION

- Pathogens found on food materials gain easy access into the body via the gastrointestinal (GI) tract.
- Pathogens are spread to food from the faces of an infected person; across hand contamination is
- common.
- Bacteria must be able to reproduce outside the host.
- **Temperature danger zone** (5–60<sup>o</sup>C) is where bacteria can grow and reproduce.

## WATERBORNE TRANSMISSION

- Waterborne diseases are found in contaminated waters.
- Faecal-oral route of transmission is common in such diseases.
- Water can be disinfected by irradiation, with chemicals (such as chlorine) and sanitation systems.

## AIRBORNE TRANSMISSION

- Airborne pathogens are found in small droplets of water.
- Airborne disease, as suggested in the name, is spread by air not by person-to-person.
- This mode of transmission can occur from nasal or throat excretions.

## VECTORS

- Vectors are living organisms that transmit pathogens.
- $\rightarrow$  Examples of vectors include mosquitoes, ticks, fleas and lice.
- The pathogen may be dependent on the vector for the completion of its life cycle.
- Using a vector is an adaptation for transmission:
- $\rightarrow$  the pathogen may not otherwise come into contact with a new host;
- $\rightarrow$  a vector may enable a pathogen to penetrate the outer defences of the host.

## **OUTLINE OF MAJOR PATHOGENS**

- tuberculosis (mycobacterium tuberculosis) → bacterial pathogen
- tetanus (clostridium tetani)  $\rightarrow$  bacterial pathogen
- crown gall (agrobacterium tumefaciens)  $\rightarrow$  bacterial pathogen
- amphibian chytrid fungal disease (batrachytrium dendrobatidis)  $\rightarrow$  fungal pathogen
- malaria (cause by protists: plasmodium falciparum, plasmodium virax)  $\rightarrow$  protistic pathogen
- jarrah dieback (phytophthora cinnamomi)  $\rightarrow$  protist plant
- influenza (human influenza a + b)  $\rightarrow$  viral inflection
- ross river virus (cause by alphavirus)  $\rightarrow$  viral inflection
- viral disease of honeybees (deformed wing virus)  $\rightarrow$  virus
- bat lyssavirus (zoonotic virus)  $\rightarrow$  virus

## PREVENTING THE SPREAD OF DISEASE

• Management strategies used to control the spread of disease include: quarantine, immunisation, disruption of a pathogen's life cycle, medication and physical preventative measures.

• Hand-washing reduces infection rates, prevents contraction and prevents the spread of disease, especially diseases that are spread by direct contact.

 $\rightarrow$  nosocomial infections (infections spread by healthcare workers) are extremely serious in their morbidity and mortality, therefore, hand-washing is an effective strategy.

• Immunisation is effective, substantially reducing the spread of disease:

 $\rightarrow$  children in Australia are routinely vaccinated against disease (e.g. tetanus, polio and Hepatitis B);

 $\rightarrow$  eradication of disease can occur (e.g. smallpox).

• Herd immunity can occur when disease spread cannot occur when a large enough proportion is immune to a disease.

- $\rightarrow$  those with health conditions against immunisations rely on herd immunity for protection from disease • **Anti-vaccinators** object immunisation of children with varying reasons:
- $\rightarrow$  false reports outlined that measles vaccines were linked to autism, therefore vaccination rates dropped substantially (scientific evidence disproves the link);
- $\rightarrow$  vaccinations can lead to severe reactions (this is rare, however).
- Quarantine stops individuals carrying a disease from entering healthy populations:
- $\rightarrow$  individuals are stopped from entering until the incubation period has passed;
- $\rightarrow$  used to prevent spread of all pathogens.

## MONITORING DISEASE ACTIVITY

• In order to define and control disease outbreaks, public health authorities need to know when/where particular infections are occurring.

- Disease is actively and globally monitored by the World Health Organisation (WHO).
- In Australia, a list of 70 notifiable diseases must be reported and notified of diagnosis.
- There are limitations of collecting data: some individuals don't see care or get diagnosed properly.

## MANAGING AN OUTBREAK



#### PREDICTING DISEASE SPREAD

• Mathematic models can predict the spread of disease and are important in controlling outbreaks.

• For a model to have good predictability, it needs to:

Reflect the complexity of the pathogen

Consider the host, pathogen and environmental interrelationships

## EPIDEMIOLOGY

• Epidemiology is the branch of medicine that deals with the distribution, incidence and control of disease.

• Though there are improvements in prevention and treatment, infectious diseases are still a major cause of death globally.